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1 Introduction

In this document, we will be deriving the thrust equation for a double inlet/double outlet
engine. I use the term “turbofan” in the title as more of a buzz word than anything,
because the derived equation will hold for any engine with a double inlet and double
outlet.

Mass Flow Rate

Mass flow rates will be used throughout this derivation, so it’s important to understand
what the term means, as well as the units associated with it. Mass flow rates are useful
for evaluating general thrust of engines because it is a number that can be easily found
for pretty much any engine on the internet. The mass flow rate of a fluid is defined as
the amount mass of fluid flowing per unit time. The equation for mass flow rate is given
in Eq. (1).

ṁ = ρuA (1)

To see how the units work out for this equation, see Eq. (2) below.[
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Velocity

In a general three-dimensional flow, we have three velocity components, one for each
coordinate direction. We can write the general formula for the velocity at any given point
as seen in Eq. (3).

~V = uı̂+ v̂+ wk̂ (3)
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The goal of the analysis is to develop and expression for the thrust, which will be aligned
with the X-direction. Thus, we can say that the Y-direction and Z-direction velocities
are zero, and write the velocity vector as follows.

~V = uı̂ (4)

Area

One of the most deceivingly confusing parts the conservation equations is the control
volume surface area term, and what it means. For a blog post regarding this topic, visit
the following website.

http://www.joshtheengineer.com/2017/01/02/surface-double-integrals/

To sum it all up, the surface area terms used in the conservation equations are shown
below.

d ~S1 = n̂1dA1

d ~S2 = n̂2dA2

(5)

This means that after integration based on the outward normal vectors, we will have the
following.

S1 = −A1

S2 = +A2

(6)

2 Engine Control Volume Schematic

A schematic of the engine and its surrounding control volume can be seen in Fig. 1. The
engine is drawn in red to distinguish it from the control volume and associated variables.
Flow comes in from the left and exits to the right.

Because we are dealing with a dual inlet and outlet, the flow through the engine is
split between a cold flow and a hot flow, denoted by C and H, respectively. The hot
flow is the flow that goes through the core of the engine. The cold flow is the flow that
bypasses the core of the engine, also called the bypass flow. The flow through the core is
called “hot” because it is mixed with fuel and ignited. The bypass flow is called “cold”
because it does not go through a combustion process.

For a dual inlet and outlet engine, we will have different mass flow rates for the two
streams passing through the engine. The exit mass flow rate for the engine is the sum of
the core and bypass mass flow rates.

ṁe = ṁe,H + ṁe,C (7)

The exit mass flow rate of the core stream includes the incoming air to the core and the
mass flow rate of the fuel.

http://www.joshtheengineer.com/2017/01/02/surface-double-integrals/
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Figure 1: Engine control volume schematic.

ṁe,H = ṁa,H + ṁf (8)

The total inlet area of the engine is the sum of the core and bypass inlet areas.

Ai = Ai,H + Ai,C (9)

Similarly, the total outlet area of the engine is the sum of the core and bypass outlet
areas.

Ae = Ae,H + Ae,C (10)

3 Conservation of Mass

Here is the mass conservation in integral form.∫∫
ρ~V · d~S = 0 (11)

Because there are more terms to deal with here than in the single inlet/single outlet
derivation, we will break them down into individual components to make it easier to
follow along. The core stream is still denoted with an “H”, and the bypass stream is still
denoted with a “C”. The flow external to the engine is denoted with an “E”. From the
mass conservation equation, we can see that we will need to integrate over some areas,
shown below.

Ein + Cin +Hin + Eout + Cout +Hout +Other = 0 (12)

Let’s write out each of these terms individually first.
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Ein : ρ [(uı̂) · − (A− Ai,C − Ai,H) ı̂] = −ρu (A− Ai,C − Ai,H) = −ρu (A− Ai)

Cin : ρ [(uı̂) · (−Ai,C ı̂)] = −ρuAi,C = −ṁa,C

Hin : ρ [(uı̂) · (−Ai,H ı̂)] = −ρuAi,H = −ṁa,H

Eout : ρ [(uı̂) · (A− Ae,C − Ae,h) ı̂] = ρu (A− Ae,C − Ae,H) = ρu (A− Ae)

Cout : ρe,C [(ue,C ı̂) · (Ae,C ı̂)] = ρe,Cue,CAe,C = ṁe,C

Hout : ρe,H [(ue,H ı̂) · (Ae,H ı̂)] = ρe,Hue,HAe,H = ṁe,H

Other : ṁs − ṁf

(13)

Using the above expressions, we can write them in the full mass conservation equation.

− ρu (A− Ai) − ṁa,C − ṁa,H + ρu (A− Ae) + ṁe,C + ṁe,H + ṁs − ṁf = 0 (14)

Now we will solve for ṁs and consolidate terms.

ṁs = ṁa,C + ṁa,H − ṁe,C − ṁe,H + ṁf + ρu (A− Ai) − ρu (A− Ae)

= ṁa,C + ṁa,H − ṁe,C − ṁe,H + ṁf +��
�ρuA− ρuAi −���ρuA+ ρuAe

(15)

We end up with the final result below.

ṁs = ṁa,C + ṁa,H − ṁe,C − ṁe,H + ṁf + ρu (Ae − Ai) (16)

4 Conservation of Momentum

Here is the mass conservation in integral form.∫∫
S

ρ~V
(
~V · d~S

)
+

∫∫
S

Pd~S = T (17)

Keeping track of every term in this equation is going to be even more difficult, because
for every term we had in the mass conservation equation, we will need two of here due to
the two surface integral terms. Let us again keep the same nomenclature scheme (E, C,
and H), but denote the first integral term by the subscript 1 and the second integral term
by the subscript 2. Below is the thrust equation written in terms of this nomenclature.

Ein,1 + Cin,1 +Hin,1 + Eout,1 + Cout,1 +Hout,1

+ Ein,2 + Cin,2 +Hin,2 + Eout,2 + Cout,2 +Hout,2 +Other = T
(18)

We can now write each of these terms individually. Let’s start with the terms for the
first integral only.
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Ein,1 : ρ (uı̂) [(uı̂) · − (A− Ai,C − Ai,H) ı̂] = −ρu2 (A− Ai)

Cin,1 : ρ (uı̂) [(uı̂) · (−Ai,C ı̂)] = −ρuAi,Cu = −ṁa,Cu

Hin,1 : ρ (uı̂) [(uı̂) · (−Ai,H ı̂)] = −ρuAi,Hu = −ṁa,Hu

Eout,1 : ρ (uı̂) [(uı̂) · (A− Ae,C − Ae,H) ı̂] = ρu2 (A− Ae)

Cout,1 : ρe,C (ue,C ı̂) [(ue,C ı̂) · (Ae,C ı̂)] = ρe,Cue,CAe,C (ue,C) = ṁe,Cue,C

Hout,1 : ρe,H (ue,H ı̂) [(ue,H ı̂) · (Ae,H ı̂)] = ρe,Hue,HAe,H (ue,H) = ṁe,Hue,H

(19)

Now let’s go through the terms associated with the second integral.

Ein,2 : Pa [− (A− Ai,C − Ai,H)] = −Pa (A− Ai,C − Ai,H)

Cin,2 : Pa (−Ai,C) = −PaAi,C

Hin,2 : Pa (−Ai,H) = −PaAi,H

Eout,2 : Pa [(A− Ae,C − Ae,H)] = Pa (A− Ae,C − Ae,H)

Cout,2 : Pe,C (Ae,C) = Pe,CAe,C

Hout,2 : Pe,H (Ae,H) = Pe,HAe,H

(20)

The last thing to take into account is the momentum crossing the control surface due to
the ṁs. This term is positive because we have drawn the vector going out of the control
volume, which is in the same direction as the outward normal. Because the fuel flow rate
is small, we are neglecting the momentum crossing the control surface due to the fuel
flow.

Other : ṁsu (21)

Now we can combine all the terms in the momentum conservation equation.

−ρu2 (A− Ai) − ṁa,Cu− ṁa,Hu+ ρu2 (A− Ae)

+ ṁe,Cue,C + ṁe,Hue,H + ṁsu

− Pa (A− Ai,C − Ai,H) − PaAi,C − PaAi,H

+ Pa (A− Ae,C − Ae,H) + Pe,CAe,C + Pe,HAe,H = T

(22)

In the next step, we will both combine the momentum-area terms, and expand out the
pressure terms.

ρu2 (Ai − Ae) − ṁa,Cu− ṁa,Hu+ ṁe,Cue,C + ṁe,Hue,H + ṁsu

���
�−PaA+���

�PaAi,C +���
�PaAi,H −����PaAi,C −����PaAi,H +��

�PaA

− PaAe,C − PaAe,H + Pe,CAe,C + Pe,HAe,H = T

(23)

We can simplify this equation and solve for the thrust, T .

T = ρu2 (Ai − Ae) − ṁa,Cu− ṁa,Hu+ ṁe,Cue,C + ṁe,Hue,H + ṁsu

+ Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa) (24)
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5 Combining Mass and Momentum

Recall the two boxed equations from above. We will plug Eq. (16) into Eq. (24) to get
the following expression.

T =ρu2 (Ai − Ae) − ṁa,Cu− ṁa,Hu+ ṁe,Cue,C + ṁe,Hue,H

u [ṁa,C + ṁa,H − ṁe,C − ṁe,H + ṁf + ρu (Ae − Ai)]

+ Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa)

(25)

Distribute the velocity u through in the third to last term, and cancel like values.

T =((((
((((ρu2 (Ai − Ae) −����ṁa,Cu−����ṁa,Hu+ ṁe,Cue,C + ṁe,Hue,H+

��
��ṁa,Cu+����ṁa,Hu− ṁe,Cu− ṁe,Hu+ ṁfu+((((

((((ρu2 (Ae − Ai)

Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa)

(26)

After canceling the like terms in the above equation and grouping the terms with velocity
u, we are left with the following equation.

T = ṁe,Cue,C + ṁe,Hue,H + u [ṁf − ṁe,C − ṁe,H ]

+ Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa)
(27)

To continue further, we need to note that the cold exit mass flow rate is equal to the cold
inlet mass flow rate (Eq. (28)), the hot exit mass flow rate is equal to the hot inlet mass
flow rate plus the fuel mass flow rate (Eq. (29)), and the fuel-to-air ratio is equal to the
mass flow rate of the fuel over the hot mass flow rate (Eq. (30)).

ṁe,C = ṁa,C (28)

ṁe,H = ṁa,H + ṁf (29)

f =
ṁf

ṁa,H

(30)

Using the above equations, we can simplify our thrust expression.

T = ṁa,Cue,C + (ṁa,H + ṁf )ue,H + u [��ṁf − ṁa,C − (ṁa,H +��ṁf )]

+ Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa)
(31)

Move some of these terms around to get like terms consolidated.

T = (ṁa,H + ṁf )ue,H − ṁa,Hu− ṁa,Cu+ ṁa,Cue,C

+ Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa)
(32)

Now we can multiply the first term in the equation by ṁa,H/ṁa,H , and combine the third
and fourth terms by factoring out the ṁa,C from each.
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T = ṁa,Hue,H (1 + f) − ṁa,Hu+ ṁa,C (ue,C − u)

+ Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa)
(33)

The last step is to factor out the ṁa,H from the first and second terms, and we are left
with our dual inlet/outlet thrust equation.

T = ṁa,H [ue,H (1 + f) − u] + ṁa,C (ue,C − u)

+ Ae,C (Pe,C − Pa) + Ae,H (Pe,H − Pa) (34)

6 Thrust Equation Simplifications

If the nozzle is not choked, then the exit pressure of the engine will equal the atmospheric
pressure. The topic of nozzle choking will be discussing in a different post. If the nozzle
is not choked, then the second term in the thrust equation disappears because Pe = Pa.

T = ṁa,H [ue,H (1 + f) − u] + ṁa,C (ue,C − u) (35)

In typical engines, the fuel-to-air ratio, f , is very small. If we assume that f � 1, then
we can write the thrust equation as follows. This is still assuming that our nozzle is not
choked.

T = ṁa,H (ue,H − u) + ṁa,C (ue,C − u) (36)

From all these thrust equations, we can see that both the core and bypass flows contribute
to the overall thrust. Increasing the exit velocity of both the core and bypass will increase
thrust, while increasing flight velocity, u, will decrease thrust.
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